

Bedienungsanleitung Software L-LAS-LT-Scope V3.1x

(PC-Software für Microsoft® Windows® 7, Windows® 10)

für Laser-Zeilensensoren der L-LAS-LT Serie

STANDARD:

L-LAS-LT-37	
L-LAS-LT-55	
L-LAS-LT-80	
L-LAS-LT-110	
L-LAS-LT-135	
L-LAS-LT-160	
L-LAS-LT-200	
L-LAS-LT-275	
L-LAS-LT-450	

COMPACT-LINE:

L-LAS-LT-38-CL L-LAS-LT-50-CL L-LAS-LT-85-RA-CL L-LAS-LT-120-CL L-LAS-LT-165-CL L-LAS-LT-250-CL

Sensor Instruments GmbH - Schlinding 11 - D-94169 Thurmansbang Tel.: +49 (0)8544 / 9719-0 - Fax: +49 (0)8544 / 9719-13 E-mail: info@sensorinstruments.de - www.sensorinstruments.de

Sensor 💥	Let's make sensors more individual
	trumonte
Inst	ruments

0 Inhalt

Kapitel		Seite
1.	Funktionsprinzip: L-LAS-LT mit integrierter Kontrollelektronik	3
1.1	Technische Beschreibung	3

3.	Bedienung der L-LAS-LT-Scope Software	6
3.1	Bedienelemente der L-LAS-LT-Scope Software	7
3.2	Numerische und graphische Anzeigelemente	17
3.3	Serieller RS232-Datentransfer	19
3.4	L-LAS-LT-Scope als Hilfsmittel zur Sensorjustage	21
3.5	L-LAS-LT-Scope als Hilfsmittel zur Sendeleistungseinstellung	22

4. Auswerte-Betriebsarten......23

4.1	LEFT-EDGE	23
4.2	RIGHT-EDGE	
4.3	WIDTH	23
4.4	CENTER	24

5.	Daten-Rekorder Funktion	25
5.1	Datenformat der Ausgabedatei	. 27

6.	Anhang	
6.1	Laserwarnhinweis	
6.2	Funktionsweise des TEACH/RESET-Tasters	
6.3	Funktionsweise des Toleranz-Potentiometers	
6.4	Funktionsweise der Digitaleingänge IN0 und IN1	
6.5	Anschlussbelegungen	
6.6	RS232 Schnittstellenprotokoll	

1 Funktionsprinzip: L-LAS-LT Sensor mit integrierter Kontrollelektronik

1.1 Technische Beschreibung

Bei den Laser-Zeilensensoren der *L-LAS-LT Serie* tritt der Laserstrahl einer Laserdiode (λ =670nm, 1mW Ausgangsleistung, Laserklasse 2) über geeignete Kollimatoren und Blenden als parallel gerichtetes Laserlicht mit homogener Lichtverteilung als Laserstrahl aus der Sendeoptik aus. Nach Reflexion an der Objektoberfläche trifft das Laserlicht auf den CCD-Zeilen-Empfänger der Empfangsoptik. Die CCD-Zeile besteht aus vielen, sehr eng benachbarten, zu einer Linie angeordneten, einzelnen Empfangselementen (Pixel). Die während der Integrationszeit gesammelte Lichtmenge jedes dieser Empfangselemente kann als Analogspannung separat ausgelesen, und nach erfolgter Analog-Digital-Wandlung als Digitalwert in einem Datenfeld gespeichert werden.

Je nach Objektabstand wird das vom Messobjekt zurückgestreute Laserlicht (Triangulationsprinzip) nur bestimmte Empfangselemente (Pixel) auf der Zeile beleuchten. Diese Pixel geben, im Vergleich zu den unbeleuchteten Pixel, eine wesentlich größere Analogspannung ab (Intensitätsmaxima). Durch geeignete Software-Algorithmen können die Bereiche der beleuchteten Zonen aus dem zuvor gespeicherten Datenfeld ermittelt werden. Da der Abstand der Pixel auf der CCD-Zeile bekannt ist, kann somit die Position bzw. der Abstand des Messobjektes ermittelt werden.

Der Mikrocontroller des *L-LAS-LT* Sensors kann mit Hilfe einer Windows PC-Software über die serielle RS232 Schnittstelle parametrisiert werden. Es können verschiedene Auswerte- bzw. Betriebsarten eingestellt werden. Am Gehäuse der Kontrollelektronik befinden sich ein TEACH/RESET-Taster [1], sowie ein Potentiometer zur Toleranzeinstellung. Die Visualisierung der Schaltzustände erfolgt über 4-LEDs (1x grün, 1x gelb und 2x rot), die am Gehäuse des *L-LAS-LT* Sensors integriert sind. Die im Sensor eingebaute Kontrollelektronik besitzt drei Digital-Ausgänge [2] (OUT0, OUT1, OUT2) deren Ausgangspolarität per Software einstellbar ist. Über zwei Digital-Eingänge (IN0, IN1) kann die externe TEACH/RESET Funktionalität und eine externe TRIGGER Funktionalität per SPS realisiert werden. Ferner wird ein schneller Analogausgang (0 ... +10V) mit 12-Bit Digital/Analog-Auflösung bereitgestellt.

[1] nicht bei CL Baureihe verfügbar

[2] CL-Baureihe besitzt zwei Digitalausgänge OUT0, OUT1

2 Installation der *L-LAS-LT-Scope* Software

Folgende Hardware Voraussetzungen sind für eine erfolgreiche Installation der L-LAS-LT-Scope Software erforderlich:

- 200 MHz Pentium-kompatibler Prozessor oder besser.
- CD-ROM oder DVD-ROM Laufwerk
- Ca. 10 MByte freier Festplattenspeicher
- SVGA-Grafikkarte mit mindestens 800x600 Pixel Auflösung und 256 Farben oder besser.
- Windows 98, Windows NT4.0, Windows 2000, Windows XP oder Windows Vista Betriebssystem
- Freie serielle RS232-Schnittstelle oder USB-Port mit USB-RS/232-Adapter am PC

Bitte installieren Sie die L-LAS-LT-Scope Software wie im Folgenden beschrieben:

Instruments Eine weiteres L-LAS-LT-Scope Setup Dialogfeld erscheint 4. am Bildschirm. 🛃 L-LAS-LT-ScopeV310 Setup Ready to Install the Application A Click Next to begin installation << <u>B</u>ack Click the Back button to reenter the installation information or click Cancel to exit Klicken Sie auf den Back Knopf um den Installationspfad erneut zu ändern. $\underline{N}ext >>$ Klicken Sie auf Next>> um die Installation zu starten oder <<u>B</u>ack <u>N</u>ext > Cancel Cancel Klicken Sie auf Cancel um die Installation zu beenden. 🖶 L-LAS-LT-S Abschließend erscheint eine Dialog-Box, die über die 5. L-LAS-LT-ScopeV310 has been erfolgreiche Installation informiert. successfully installed. Es wurde eine neue Programmgruppe L-LAS-LT-Scope Click the Finish button to exit this installation unter Start-Alle-Programme angelegt. Finish Klicken Sie auf Finish um die Installation abzuschließen. < <u>B</u>ack <u>Finish</u> Cancel Der Start der L-LAS-LT-Scope Software erfolgt durch L-LAS-LT-ScopeV310 L-LAS-LT-ScopeV310 25 Mausklick auf das entsprechende Symbol in der neu er-× zeugten Programmgruppe unter: Start >Alle Programme > L-LAS-LT-ScopeV3.1x

Sensor

Let's make sensors more individual

Deinstallation der L-LAS-LT-Scope Software:

	Die Deinstallation wird mit Hilfe des Windows®-			
Deinstallations-Tools durchgeführt.				
1	Das Windows-Deinstallations-Programm finden Sie im			
	Ordner Systemsteuerung/Software:			
Software	Start/Einstellungen/Systemsteuerung/Software			

3 Bedienung der *L-LAS-LT-Scope* Software

Die *L-LAS-LT-Scope* Software dient zur Parametrisierung der Kontrollelektronik der *L-LAS-LT* Zeilensensoren über die serielle Schnittstelle. Die vom Sensor gelieferten Messwerte können mit Hilfe der PC-Software visualisiert werden. Somit kann die Software u.a. zu Justagezwecken und zum Einstellen von geeigneten Toleranzgrenzen zur Kontrolle des Messobjektes herangezogen werden.

Der Datenaustausch zwischen der PC-Bedienoberfläche und dem Sensorsystem erfolgt über eine Standard RS232 Schnittstelle. Zu diesem Zweck wird der Sensor über das serielle Schnittstellenkabel cab-las-4/PC mit dem PC verbunden. Nach erfolgter Parametrisierung können die Einstellwerte dauerhaft in einen EEPROM Speicher der *L-LAS-LT Kontrollelektronik* abgelegt werden. Das Sensorsystem arbeitet hierauf im "STAND-ALONE" Betrieb ohne PC weiter.

Nach dem Aufruf der L-LAS-LT-Scope Software erscheint folgende Windows® Bedienoberfläche:

🗮 L-LAS-LT-Scope Series CONTROL-PANEL		
L-LAS-LT-Scope Version 3.10		
PARA1 PARA2 REC CALIB PARA1 CENTER STO EVAL-MODE CENTER STO TOLERANCE - HIGH 100 VIDE TOLERANCE -LOW 100 HW 440DE DISABLE ALL POLARITY DIRECT ANALOG-OUT DIRECT 010V ZOOM-MODE DIRECT 1:1	JN 1024- 896- 896- 768- 640- 512- 1000000000000000000000000000000000000	100 2048 RIGHT
	CONNECT) COM: 1 [L-LAS-LT-50-CL-V3.10 28/Aug/09	

Mit Hilfe des *L-LAS-LT-Scope* CONTROL-PANEL stehen viele Funktionen zur Verfügung:

- Visualisierung der Messdaten in numerischen und graphischen Ausgabefeldern.
- Einstellen der Laserleistung für den jeweiligen Laser-Sender.
- Einstellung der Polarität der digitalen Schaltausgänge OUT0, OUT1 und OUT2.
- Auswahl eines geeigneten Auswerte-Modus.
- Vorgabe von Sollwert und Toleranzbandgröße.
- Abspeichern der Parameter in den RAM, EEPROM Speicher an der Kontrollelektronik oder in ein Konfigurationsfile auf der Festplatte des PC.

Im Folgenden werden die Bedienelemente der L-LAS-LT-Scope Software erklärt.

3.1 Bedienelemente der *L-LAS-LT-Scope* Software:

PARA1 PARA2 REC CALIB				
PARA I: GENERAL-PARAMETER				
EVAL-MODE CENTER				
TOLERANCE - HIGH				
TOLERANCE-LOW				
HW'MODE DRAELE ALL				
AVERAGE 2				
ANALOG-OUT DIRECT 010V				
ZOOM-MODE DIRECT 1 : 1				

PARA1 PARA2	REC	CALIB
-------------	-----	-------

Nach Anklicken des PARA1 Knopfes öffnet sich auf der Bedienoberfläche das PARAMETER I Fenster. Hier können verschiedene allgemeine Parameter an der Kontrollelektronik eingestellt werden.

Erst nach Anklicken der SEND Taste werden Änderungen, die in den nachfolgend beschriebenen Funktionsfeldern gemacht wurden, an der Kontrollelektronik des *L-LAS-LT Sensors* aktiv!

EVAL-MODE	CENTER	-
	L-EDGE	K
	R-EDGE	
	WIDTH	Ľ
	CENTER	

Diffuse Reflexion, normalerweise tritt nur ein Intensitäts-Maxima an der CCD Zeile auf.

Es wird meistens der EVAL-MODE = CENTER verwendet.

EVAL-MODE:

Listen-Auswahlfeld zur Vorgabe des Auswertemodus am L-LAS-LT Sensor.

L-EDGE (LEFT-EDGE):

Als Messwert wird das erste Intensitätsmaximum auf der CCD-Zeile zur Auswertung herangezogen. Hierbei werden die Schnittpunkte zwischen der Videoschwelle (grüne Horizontale Linie) und dem Intensitätsmaximum (rote Kurve) berechnet. Im Auswertemodus LEFT-EDGE wird der erste Hell/Dunkelübergang = Linke Kante ausgewertet.

R-EDGE (RIGHT-EDGE):

Als Messwert wird die rechte Kante am Intensitätsmaximum zur Auswertung herangezogen.

WIDTH:

Es wird die Breite des an der CCD-Zeile auftretenden Intensitätsmaximums aus dem Videobild mit Hilfe der Videoschwelle errechnet.

CENTER (Standardauswertemodus):

Aus dem Intensitätsverlauf des Videosignals wird mit Hilfe der Videoschwelle der Mittelpunkt des Intensitätsmaximums berechnet.

TOLERANCE-HIGH	200
TOLERANCE-LOW	100

	TOLERAN	CE
	5.00	[+]
[mm]	2.50	[-]

SLOPE-VALUE [µm/pixel]

25.000

TRIGGER-MODE	
	✓ CONTINUOS
	EXT INO L/H
	EXT INO HIGH

TOLERANCE - HIGH, TOLERANCE-LOW:

In diesen beiden numerischen Eingabefeldern können durch Zahlenwert-Eingabe oder durch Anklicken der Pfeil-Schaltelemente mit der Maus, Toleranz-Vorgabewerte in Pixel für die obere (HIGH) und untere (LOW) Toleranzgrenze eingestellt werden.

Die beiden Toleranzgrenzen bilden ein Toleranzband um den Sollwert (TEACH-VALUE).

Die aktuell am Sensor eingestellten Toleranzen werden in zwei numerischen Anzeigefeldern in der Einheit [mm] unterhalb des graphischen Anzeigefensters dargestellt.

z.B. ergibt sich zusammen mit dem SLOPE-VALUE (Empfindlichkeit):

TOL[+] [mm] = SLOPE * TOLERANCE _ HIGH Hier: TOL [mm] = 25.000*200 Pixel = 5.00 mm

TOL[-] [*mm*] = *SLOPE* * *TOLERANCE* _ *LOW Hier: TOL* [*mm*] = 25.00*100 *Pixel* = 2.50 *mm*

TRIGGER-MODE:

CONTINUOUS:

Kontinuierliche Auswertung der aktuellen Messwerte.

EXT. INO L/H:

Externe flankengesteuerte (LOW/HIGH) Triggerung der Messwertauswertung über den Digitaleingang IN0/Pin3/grün an der 8-pol. SPS Anschlussbuchse.

EXT. IN0 HIGH:

Externe Triggerung der Messwertauswertung über einen High-Pegel (+Ub) am Digitaleingang IN0/Pin3/grün.

POLARITY	INVERSE 💌
	✓ INVERSE
	DIRECT
	The second second

POLARITY:

In diesem Funktionsfeld kann durch Anklicken des Eingabefeldes mit der Maus oder durch Anklicken der Pfeil-Taste die Ausgangspolarität am *L-LAS-LT Sensor* eingestellt werden. Der *L-LAS-LT Sensor* besitzt drei Digitalausgänge (OUT0, OUT1 und OUT2), über die Fehlerzustände an die SPS weitergeleitet werden können.

DIRECT:

Im Fehlerfall liegt der jeweilige Digitalausgang auf +Ub (+15DC ... +30VDC), (rote LED an).

INVERSE:

Im Fehlerfall liegt der jeweilige Digitalausgang auf Bezugspotential (GND, 0V), (rote LED an).

HW-MODE (Hardware-Mode) [1]:

Durch Anklicken des Listen-Auswahlfeldes kann das TOLERANCE Potentiometer und/oder die TEACH/RESET Taste am Sensorgehäuse des *L-LAS-LT Sensors* aktiviert (ENABLE) oder deaktiviert (DISABLE) werden.

Das TOLERANCE Potentiometer gestattet die Vorgabe eines symmetrischen Toleranzfensters um den Sollwert. Falls das Funktionsfeld auf ENABLE ALL oder ENABLE T-SET eingestellt ist, können keine Zahlenwerteingaben in den TOLERANCE-VALUE Eingabefeldern aus der PC-Software Oberfläche heraus gemacht werden. Die entsprechenden Funktionsfelder werden deaktiviert dargestellt.

DISABLE ALL

Sowohl die TEACH/RESET-Taste als auch das TOLERANCE Potentiometer am Gehäuse sind deaktiviert.

ENABLE ALL:

Das TOLERANCE Potentiometer am Gehäuse ist aktiviert. (Drehen im Uhrzeigersinn vergrößert die Toleranzbandbreite) Die TEACH/RESET Taste am Gehäuse ist aktiviert. kurzer Tastendruck (t < 0.7s) : RESET Funktion. langer Tastendruck (t > 1.5s) : TEACH Funktion.

ENABLE BTN:

Nur die TEACH/RESET Taste am Gehäuse ist aktiviert.

ENABLE T-SET:

Nur das TOLERANCE Potentiometer am Gehäuse ist aktiviert.

1
⊻1
2
. 4
8
16
32
64
128
256

AVERAGE:

In diesem Funktionsfeld kann durch Anklicken des Listen-Eingabefeldes mit der Maus eine Mittelwertbildung am *L-LAS-LT Sensor* ausgewählt werden. Mit jedem Hauptprogrammdurchlauf wird der aktuelle Messwert in ein Ringspeicherfeld abgelegt und anschließend hieraus der Mittelwert, der im Ringspeicherfeld befindlichen Werte berechnet.

Der Mittelwert des Ringspeicherfeldes wird als Messwert MEASUREMENT_VALUE herangezogen. Die Größe des Ringspeichers kann mit dem AVERAGE Wert von 1 bis 256 eingestellt werden.

[1] nicht verfügbar bei CL-Sensortyp

Sensor

l			
	ANALOG-OUT	DIRECT 0 10V	T
		✓ DIRECT 0 10V	
	ZOOM-MODE	MAXIMA	
		MINIMA	
		MAX - MIN	

ANALOG-OUT (Analog-Output-Mode):

Funktionselement zur Auswahl des Ausgabemodus der Analogspannung am *L-LAS- Sensor* (Pin8/rot 8-pol. SPS/POWER-Buchse). Die Analogspannung wird im Bereich von 0 bis 10V mit einer Auflösung von 12-Bit ausgegeben.

DIRECT 0..10V :

Am Analogausgang Pin8/rot/ wird eine dem aktuellen Messwert proportionale Spannung (0.. 10V) ausgegeben.

MAXIMA:

Am Analogausgang Pin8/rot/ wird der aktuelle Maximalwert ausgegeben (Schleppzeigerprinzip, Zurücksetzen durch Eingang IN1/Pin4/gelb Puls von <750ms Dauer oder durch Tastendruck am TEACH/RESET-Taster).

MINIMA:

Am Analogausgang Pin8/rot/ wird der aktuelle Minimalwert ausgegeben (Schleppzeigerprinzip, Zurücksetzen durch Eingang IN1/Pin4/gelb Puls von <750ms Dauer oder durch Tastendruck am TEACH/RESET-Taster).

MAX-MIN:

Am Analogausgang Pin8/rot/ wird die aktuelle Differenz zwischen Maximalwert und Minimalwert ausgegeben (Schleppzeigerprinzip, Zurücksetzen durch Eingang IN1/Pin4/gelb Puls von <750ms Dauer oder durch Tastendruck am TEACH/RESET-Taster).

ZOOM-MODE (Analog-Output):

Funktionselement zur Einstellung verschiedener Zoom-Betriebsarten am Analogausgang des *L-LAS-LT Sensors*.

DIRECT 1:1:

Am Analogausgang Pin8/rot/ wird der gesamte Messbereich des Sensors als 0 bis 10V Spannungshub ausgegeben.

ZOOM X1, ZOOM X2 ... ZOOM X16:

Am Analogausgang Pin8/rot/ wird die Differenz zwischen dem aktuellen Messwert (Pixel) und der Lernposition (Teach-Wert in Pixel) ausgegeben. An der Lernposition wird am Analogausgang 5V ausgegeben. Ist der aktuelle Messwert kleiner als die Lernposition so wird eine Spannung < 5V ausgegeben, ist der aktuelle Messwert größer als der Lernwert so wird eine Spannung > 5V ausgegeben. Die Abweichung von der 5V Lernposition kann mit einem Zoom-Faktor von X2 bis X16 verstärkt werden.

TOL-WIN <5V-range>:

Am Analogausgang Pin8/rot/ wird ein Spannungshub von 5V über das aktuelle Toleranz-Fenster ausgegeben. An der unteren Toleranzgrenze liegt ein Spannungswert von 2.5V vor, an der oberen Toleranzgrenze liegen 7.5V an. An der Lernposition werden 5V ausgegeben.

TOL-WIN <10V-range>:

Am Analogausgang Pin8/rot/ wird ein Spannungshub von 10V über das aktuelle Toleranz-Fenster ausgegeben. An der Lernposition werden 5V ausgegeben, an der unteren Toleranzgrenze liegen 0V am Analogausgang an, an der oberen Toleranzgrenze liegen 10V an.

ANALOG-OUT	DIRECT 0 10V 🔽
ZOOM-MODE	
	✓ DIRECT 1 : 1
	ZOOM X1 <5V-setpt>
	ZOOM X2 <5V-setpt>
	ZOOM X4 <5V-setpt>
	ZOOM X8 <5V-setpt>
	ZOOM X16 <5V-setpt>
	TOL-WIN <5V-range>
	TOL-WIN <10V-range>

PARA1 PAR	A2 REC	
PARA II:	GENERAL-PARA	METER
POWER 1000 - 500 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	EXP-TIME[ms]	V-THD[%] 100 - 50 - 1 - 25
POWER-MOD	E DYN-PO	WER 🔽
TEACH-VALUE	: (Pixel)	ТЕАСН
TRIGGMODE	CONTINUOUS	_
TRIGGER-THR	ESHOLD	256

PARA1 PARA2 REC CALIB

Nach Anklicken des PARA2 Knopfes öffnet sich auf der Bedienoberfläche das PARAMETER II Fenster. Hier können weitere Parameter-Einstellungen an der Kontrollelektronik vorgenommen werden.

SEND

Erst nach Anklicken der SEND Taste werden Änderungen, die in den nachfolgend beschriebenen Funktionsfeldern gemacht wurden, an der Kontrollelektronik des *L-LAS-LT Sensors* aktiv!

<u>POWER:</u> (nur bei POWER-MODE = STATIC oder DYN-INT-TIME relevant)

In diesem Funktionsfeld kann mit Hilfe der Pfeiltasten, Schieberegler oder durch Zahlenwerteingabe in das Eingabefeld die Laserleistung an der Laser-Sendeeinheit des *L*-*LAS-LT* Sensors eingestellt werden.

EXP-TIME[ms]:

(nur bei POWER-MODE = STATIC oder DYN-POWER relevant)

In diesem Funktionsfeld kann mit Hilfe der Pfeiltasten, Schieberegler oder durch Zahlenwerteingabe in das Eingabefeld die Belichtungszeit am CCD-Empfänger des *L-LAS-LT* Sensors eingestellt werden. Eine Erhöhung der Belichtungszeit verringert die Schaltfrequenz des Sensors. Die Schaltfrequenz f[Hz] ergibt sich aus dem Kehrwert der Belichtungszeit T[s]:

$$f[Hz] = 1 / T[s]$$

Instruments

VTHD[%]:

In diesem Funktionsfeld kann durch Zahlenwert-Eingabe oder mit Hilfe des Schiebereglers die Video-Schwelle am L-LAS-LT Sensor festgelegt werden. Mit deren Hilfe können aus dem Intensitätsverlauf (Video-Signal) der CCD-Zeile die Messwerte aus den Hell/Dunkelübergängen abgeleitet werden. Hierzu werden die Schnittpunkte zwischen dem Intensitätsprofil (rote Kurve) und der einstellbaren Video-Schwelle (grüne horizontale Linie) berechnet und gespeichert.

Der x-Wert des jeweiligen Schnittpunktes ist einem Pixel auf der CCD-Zeile zugeordnet. Aus dieser Information und den bekannten Abständen der Pixel auf der CCD-Zeile kann der Messwert errechnet werden. Die so gewonnenen Schnittpunkte zwischen Intensitätsprofil und Video-Schwelle werden im Folgenden als Kanten bezeichnet.

POW	ER-MODI	E	DYN-INT-TIME
			STATIC
	1		DYN-POWER
			✓ DYN-INT-TIME

POWER-MODE:

Dieses Funktionsfeld dient zur Einstellung der Laser-Betriebsart am *L-LAS-LT Sensor*.

STATIC:

Die Laserleistung am Sensor wird nicht automatisch geregelt.

Als Einstellwert für die Laserleistung wird der am POWER Schieberegler eingestellte Wert herangezogen.

DYN-POWER:

Falls diese Betriebsart eingestellt ist, wird die Laserleistung am *L-LAS-LT* Sensor automatisch geregelt.

Hierbei wird die Laserleistung so eingeregelt, dass der Maximalwert des "Intensitätsmaxima" bei ca. 60-90% des Analog-Dynamikbereiches liegt. <u>DYN-INT-TIME:</u>

Falls diese Betriebsart eingestellt ist, wird die Belichtungszeit am CCD-Empfänger des *L-LAS-LT Sensor* automatisch geregelt.

Hierbei wird die Belichtungszeit so eingeregelt, dass der Maximalwert des "Intensitätsmaxima" bei ca. 60-90% des Analog-Dynamikbereiches liegt.

TEACH-VALUE (Pixel):

In diesem Funktionsfelder kann durch Zahlenwert-Eingabe oder mit Hilfe der Pfeiltasten ein Lernwert am *L-LAS-LT* Sensor vorgebeben werden.

Beachte:

Eine Änderung des Lernwertes wird erst nach Anklicken der SEND Taste an der Kontrollelektronik aktualisiert.

Der Lernwert (TEACH-VALUE) wird in Pixel vorgegeben. Die Umrechnung in μ m kann wie bei der Toleranz über den SLOPE-VALUE (Empfindlichkeit – μ m/Pixel) vorgenommen werden. z.B. ergibt sich für den *L*-*LAS*-*LT*-80:

SLOPE-VALUE [µm/pixel]

5.000

TEACH _VALUE [mm]=SLOPE*TEACH [Pixel] TEACH_VALUE [mm] = 5.000[um/Pixel] * 1024[Pixel] = 5.120 mm

Sensor 🛶	Let's make sensors more individu
- ALA	
Inst	truments

PARA1 PARA2 REC CALIB
DATA-RECORDER
RS-232-MODE STATIC
TIME-INTERVAL [sec]
SAMPLES [MAX 32000]
DAYS: HOURS: MIN: SEC:
START DATE: START TIME: 09-08-2009
SAMPLE: 0
d:\Programme\RECORD.DAT

|--|

PARA1	PARA2	REC	CALIB
÷	6 J		÷

Nach Anklicken des REC Knopfes öffnet sich auf der Bedienoberfläche das DATA-RECORDER Fenster.

Vgl. auch Kapitel 5. Daten-Rekorder-Funktion

RS-232-MODE	STATIC
	-

RS232-MODE:

Drop Down Funktionsfeld zur Einstellung der Datenanforderung an der L-LAS-Sensor Hardware.

STATIC:

Der Sensor sendet automatisch keine Messdaten über die RS232 Schnittstelle. Jeder einzelne Datentransfer wird vom PC/SPS über den Befehl Nr. 18 ausgelöst. Der Sensor sendet nach dieser Anforderung einen einzelnen Datenframe (36 Bytes) zum PC/SPS.

EXT-IN0 L/H TRIGG:

Mit jeder LOW/HIGH Flanke am Digitaleingang IN0/Pin3/grün wird ein einzelner Datenframe (36 Byte) zum PC/SPS übertragen.

TIME-INTERVAL [sec]:

Mit Hilfe des numerischen Eingabefeldes kann ein Zeitintervall in Sekunden angegeben werden. Nach Ablauf dieser Zeitspanne werden von der PC-Software automatisch Messdaten vom Sensor angefordert (Befehl 18

SAMPLES [MAX 32000]:

Numerisches Eingabefeld zur Vorgabe der Maximalzahl der Messwerte die Abgespeichert werden sollten. Werte von 10 bis 32000 sind einstellbar.

FILE-Taste

Nach Anklicken der Taste FILE öffnet sich ein neues Dialog-Fenster, das zur Vorgabe des Dateinamens, bzw. zur Einstellung des Speicherortes der Ausgabedatei dient. Der aktuell gewählte Speicherort und der Dateiname der Ausgabedatei werden in einer Textanzeige neben der File-Taste eingeblendet.

d:\Programme\RECORD.DAT

Mit Hilfe der START Taste kann die automatische Aufzeichnung gestartet werden. Falls die Aufzeichnung vor erreichen der durch SAMPLES vorgegebenen Maximalzahl beendet werden sollte, kann dies durch Anklicken der STOP Taste erfolgen.

Numerisches Anzeigefeld, das die aktuelle Anzahl der gelesenen Messwerte ausgibt.

	Instruments
PARA1 PARA2 REC CALIB CCD-CALIBRATION CCD-INFO: 512-pixel; 12.5µm pixel-pitch 2048-subpixel; resolution=+/-25µm working-range = 35mm 80mm	PARA1 PARA2 REC CALIB Nach Anklicken des CALIB Knopfes öffnet sich auf der Bedienoberfläche das CCD-CALIBRATION Fenster.
HIGH-GAIN LOW-GAIN	
SLOPE-VALUE (µm/pixe)	Achtung !
36300	Erst nach Anklicken der SEND Taste werden Änderungen, die in den nachfolgend beschriebenen Funktionsfeldern gemacht wurden, an der Kontrollelektronik des <i>L-LAS-LT Sensors</i> aktiv!

CCD-INFO: ------ L-LAS-LT-50-CL ------512-pixel; 12.5µm pixel-pitch 2048-subpixel; resolution=+/-25µm working-range = 35mm ... 80mm

CCD-INFO:

Nach Anklicken des CONNECT- Funktionsfeldes werden automatisch über die serielle RS232 Schnittstelle Informationen über die aktuell erkannte Sensorhardware ausgetauscht. Diese Hardwareinformationen werden im CCD-INFO Textfeld angezeigt.

Sensor Let's make sensors more individual

	HIGH-GAIN
	LOW-GAIN
÷	

SLOPE-VALUE [µm/pixel]

25.000

REFERENCE-OFFSET [µm]

160000

CCD-GAIN [1]:

Binärschalter, mit dessen Hilfe die Verstärkung an der CCD-Zeile eingestellt werden kann. Beachte:

Diese Funktion steht nicht bei allen L-LAS-LT Sensortypen zur Verfügung.

SLOPE-VALUE [µm/pixel]:

Numerisches Eingabefeld zur Vorgabe der Empfindlichkeit des *L-LAS-LT* Sensors. Der hier eingestellte Zahlenwert bestimmt wie viele Mikrometer Wegänderung jeder Pixeländerung entsprechen.

REFERENCE-OFFSET [µm]:

Numerisches Eingabefeld zur Vorgabe eines Offset-Wertes. Falls zum Beispiel der *L-LAS-LT-200* Sensor verwendet wird, so beginnt der Arbeitsbereich des Sensors bei 160.0mm. Der hier eingestellte Offset-Wert wird zum Messwert, der aus der Auswertung der CCD-Zeileninformation gewonnen wird, hinzuaddiert.

[1] Funktion ist nicht bei allen Sensortypen verfügbar

Let's make sensors more individua Sensor

Mit Hilfe der RESET-Taste können die aktuellen

Der aktuelle Maximalwert MAX und der aktuelle

Minimalwert MIN seit dem letzten RESET- Vorgang wird in jeweils einem numerischen Ausgabefeld

angezeigt. Die hier dargestellten Zahlenwerte sind

Pixelwerte. Der aktuelle Messwert in Pixel wird in dem

mit M-VALUE bezeichneten Ausgabefeld angezeigt. Die

nebenstehenden numerischen Anzeigeelemente werden

Analogausgabemodus

MAXIMA, MINIMA oder MAX-MIN eingeblendet.

Maximalwert-

hzw

ANALOG-OUT:

der

Minimalwertermittlung zurückgesetzt werden.

RESET-TASTE:

Schleppzeigerwerte

im

nur

Reset M-VALUE 2484 MAX 2940 MIN DIRECT 0 ... 10V ANALOG-OUT 1550 ✓ DIRECT 0 ... 10V ZOOM-MODE MAXIMA MINIMA Reset MAX - MIN

Teach Reset/Teach Taster

TEACH-Taste [1]:

Durch Anklicken der TEACH-Taste wird am L-LAS-LT Sensor der Lernvorgang ausgelöst. Hierbei wird die Lage der Intensitätsmaxima am L-LAS-LT Sensor ausgewertet und je nach Auswertemodus der berechnete Wert in den flüchtigen RAM-Speicher der Kontrollelektronik als Lernwert geschrieben.

Nach Durchführung des Lernvorgangs blinkt die gelbe Leuchtdiode am Gehäuse des L-LAS-LT Sensors kurz 3-x mal auf.

Der Lernvorgang kann auch mit Hilfe der am Gehäuse befindlichen TEACH/RESET Taste (t >1.5s drücken) oder durch einen HIGH-Puls am Digitaleingang IN1/gelb/Pin4 von mindestens 1.5s Dauer ausgelöst werden.

Alternativ kann der aktuelle Lernwert (Sollwert) auch durch Zahlenwerteingabe in die numerischen Eingebefelder eingestellt werden. Der so eingestellte Lernwert wird erst nach Anklicken der SEND Taste am L-LAS-LT Sensor aktiviert.

E-BEG:

Numerisches Eingabefeld zur Vorgabe des Auswertebeginns. Die CCD-Zeile wird ab dem hier eingegebenen Pixel ausgewertet (Evaluierungsbeginn). (Default-Wert = 1). Die Analoginformation der Pixel die links von E-BEG liegen werden zur Auswertung nicht herangezogen.

E-END:

Numerisches Eingabefeld zur Vorgabe des Auswerte-Endes. Die Intensitätsinformation an der CCD-Zeile wird bis zu diesem Pixel ausgewertet. Pixel die rechts von dem hier vorgegebenen Pixelwert liegen, werden nicht ausgewertet.

[1] nicht verfügbar bei CL-Type

SEND

PARAMETER TRANSFER:

Diese Gruppe von Funktionsknöpfen dient zum Parameter-Transfer zwischen dem PC und der *L-LAS-LT Kontrollelektronik* über die serielle RS232 Schnittstelle.

SEND:

Nach Anklicken der SEND Taste werden die aktuell an der Bedienoberfläche eingestellten Parameter zur *L-LAS-LT Kontrollelektronik* übertragen. Das Ziel der Datenübertragung ist abhängig vom jeweils angewählten Radio-Knopf (RAM, EEPROM, oder FILE).

GET:

Nach Anklicken der GET-Taste werden die Einstell-Parameter von der *L-LAS-LT Kontrollelektronik* zum PC übertragen und an der Bedienoberfläche aktualisiert. Die Quelle des Datentransfers wird wiederum durch den eingestellten Radio-Knopf bestimmt:

RAM:

Die aktuell eingestellten Parameter werden in den flüchtigen RAM-Speicher der *L-LAS-LT Kontrollelektronik* geschrieben oder sie werden von dort gelesen und zum PC übertragen.

Beachte: Die im RAM eingestellten Parameter gehen verloren, falls die *L-LAS-LT Kontrollelektronik* von der Spannungsversorgung getrennt wird.

EEPROM:

Die aktuell eingestellten Parameter werden in den nichtflüchtigen EEPROM-Speicher der *L-LAS-LT Kontrollelektronik* geschrieben oder sie werden von dort gelesen und zum PC übertragen. Im EEPROM abgespeicherte Parameter gehen auch nach Trennung der Spannungsversorgung nicht verloren.

Falls Parameter aus dem EEPROM der *L-LAS-LT Kontrollelektronik* gelesen werden, müssen diese durch Anwahl des RAM-Knopfes und anschließendem Tastendruck auf SEND in das RAM der *L-LAS-LT Kontrollelektronik* geschrieben werden. Die *L-LAS-LT Kontrollelektronik* arbeitet hierauf mit den eingestellten RAM-Parametern weiter.

FILE:

Falls der FILE Radio Knopf ausgewählt ist, bewirkt ein Tastendruck auf die SEND/GET Taste, dass ein neuer File-Dialog an der Bedienoberfläche geöffnet wird. Die aktuellen Parameter können in eine frei wählbare Datei auf die Festplatte des PC geschrieben werden oder von dort gelesen werden.

L-LAS-LT-Se	ries Parameter File 🛛 ? 👂	K
Directory <u>H</u> istory:	D:\Programme\SensorInstruments\L-LAS-LT-ScopeV310	
<u>S</u> uchen in:	🗀 L-LAS-LT-ScopeV310 🗾 🖛 🖻 💣 🎫	
Cvirte	ini	
Datei <u>n</u> ame:	L-LAS-PARA.ini	
Datei <u>t</u> yp:	*.ini Abbrechen	

FILE-Dialog Fenster:

Die Standard-Ausgabedatei für die Parameter-Werte hat den Dateinamen "LLASpara.ini".

Die Ausgabedatei kann z.B. mit dem Standard Windows Text-Editor Programm "EDITOR" geöffnet werden.

3.2 Numerische und graphische Anzeigeelemente:

VIDEO-Taste:

Nach Anklicken der VIDEO-Taste wird das am CCD-Empfänger gemessene Intensitätsprofil zum PC übertragen und als rote Kurve im graphischen Anzeigefenster dargestellt.

Auf der y-Achse werden die Analogsignale der einzelnen Pixel dargestellt. Die Analogwerte (Videosignale) der CCD-Zeile werden mit Hilfe eines AD-Wandlers mit 10-Bit Auflösung konvertiert. Aus diesem Grunde ergibt sich der Wertebereich für die y-Achse von 0 ... 1024. Die aktuell eingestellte Videoschwelle (V-THD) wird als grüne horizontale Linie in der Grafik dargestellt.

Das Intensitätsmaximum auf der CCD-Zeile ergibt sich durch optische Abbildung des vom Messobjekt zurückgestreuten Laserlichtes.

Aus den Schnittpunkten des Intensitätsprofils (rote Kurve) mit der Videoschwelle (grüne Linie) werden die Kantenwerte (Pixel) abgeleitet. Auf der x-Achse sind die Pixel der CCD-Zeile dargestellt (z.B.: Pixel: 1. .. 4096). Aufgrund der begrenzten Datenübertragungsrate der seriellen Schnittstelle (19200 Baud/s) kann das graphische Ausgabefenster nur im Sekundentakt aktualisiert werden

Unterhalb des graphischen Ausgabefensters befindet sich ein weiteres Anzeigeelement, das die aktuell erkannten abgeschatteten Bereiche (grau) und die belichteten Bereiche (rot) der CCD-Zeile wiedergibt. Ferner wird die aktuell erkannte Kantenposition durch einen schwarzen Kreis angedeutet.

E-LEFT:

Numerisches Anzeigefeld zur Ausgabe der aktuellen Pixel-Position des linken Hell/Dunkel Übergangs, der aus dem Intensitätsprofil (rote Kurve) der CCD-Zeile berechnet wird.

E-RIGHT:

Numerisches Anzeigefeld zur Ausgabe der aktuellen Pixel-Position des rechten Hell/Dunkel Übergangs, der aus dem Intensitätsprofil (rote Kurve) der CCD-Zeile berechnet wird.

MEASUREMENT-VALUE:

Numerisches Anzeigefeld zur Ausgabe des aktuellen Messwertes (Abhängig von eingestellten Auswertemodus). Das linke numerische Anzeigefeld gibt den aktuellen Messwert in Pixel an, im rechten Anzeigefeld wird der in Millimeter umgerechnete Messwert ausgegeben.

Falls der aktuelle Messwert im Toleranzband um den Lernwert liegt, werden die Anzeigefelder mit grünem Hintergrund dargestellt. Liegt der Messwert außerhalb des Toleranzbandes, so werden die Anzeigeelemente mit rotem Hintergrund dargestellt. Der Messwert in Pixel bzw. in [mm] ergibt sich nicht direkt aus den Pixel-Kantenwerten E-LEFT und E-RIGHT, es werden die über eine Umrechnungstabelle linearisierten Messwerte ausgegeben.

<u>B</u>UN

RUN-Taste:

Nach Anklicken der RUN-Taste werden die aktuellen Messdaten vom *L-LAS-LT Sensor* zum PC über die serielle Schnittstelle übertragen. Anklicken der STOP Taste beendet den Datenaustausch.

STOP-Taste:

Ein Mausklick auf die STOP-Taste beendet den Datentransfer zwischen dem *L-LAS-LT Sensor* und dem PC.

Nach Anklicken der RUN-Taste wird der aktuelle Messwert im graphischen Anzeigefenster im "Roll-Modus" dargestellt.

Hierbei laufen die Messwerte als rote Kurve von rechts nach links durch das graphische Anzeigefenster.

Die Aufteilung der y-Achse entspricht den an der CCD Zeile vorhandenen Pixel bzw. Subpixel der Zeile. Der aktuellste Messwert wird in der Graphik am rechten Ende beim x-Wert = 100 dargestellt.

Der aktuell eingestellte Sollwert (TEACH-Wert) wird als gestrichelte horizontale Linie angezeigt. Zusätzlich wird das aktuell eingestellte Toleranzfenster durch zwei horizontale grüne Linien, die sich symmetrisch um den Sollwert befinden, dargestellt.

Die Länge des Datenrahmens, der im "RUN-Modus" über die serielle Schnittstelle übertragen wird, ist auf 18-Wörter (36-Bytes) limitiert. Hierdurch können die numerischen und graphischen Anzeigeelemente schneller aktualisiert werden.

Der Datentransfer über die serielle RS232 Schnittstelle benötigt deshalb nicht so viel Zeit im Vergleich zum "VIDEO-Modus" (im VIDEO-Modus muss die Intensitätsinformation für jedes Pixel übertragen werden).

Durch Anklicken der ZOOM-Taste wird die Y-Achse des Graphik Fensters automatisch umskaliert, so dass die Messwertänderungen deutlicher angezeigt werden können.

Im nebenstehenden Bild ist der zeitliche Verlauf der Messwertänderungen als rote Kurve und das Toleranzband mit zwei grünen Linien dargestellt. Der Lernwert wird als gestrichelte horizontale Line dargestellt.

3.3 Serieller RS232-Datentransfer:

RS232 KOMMUNIKATION:

- Standard RS232 serielle Schnittstelle ohne Hardware-Handshake.
- 3-Draht-Verbindung: GND, TXD, RXD.
- Geschwindigkeit: Einstellbar von 9600 Baud bis 115200 Baud, 8 Daten-Bits, kein Parity-Bit, 1 Stop-Bit, Binär Modus, MSB first.

Die stabile Funktion der RS232 Schnittstelle (Statusmeldung nach Programmstart) ist eine Grundvoraussetzung für den erfolgreichen Parameteraustausch zwischen dem PC und der *L-LAS-LT Kontrollelektronik*. Wegen der geringen Datenübertragungsrate der seriellen Schnittstelle (19200 bit/s) können nur langsame Veränderungen der Analogwerte an der Graphikanzeige des PC mitverfolgt werden. Um die maximale Schaltfrequenz der *L-LAS-LT Kontrollelektronik* zu gewährleisten muss im normalen Überwachungsprozess der Datenaustausch gestoppt werden (STOP-Taste anklicken).

CONNECT COM:	1 L-LAS-LT-50-CL-V3.10 08/Sept/09
--------------	-----------------------------------

CONNECT:

Beim Start der Software wird versucht, über die zuletzt verwendete COM Schnittstelle eine Verbindung zur *L-LAS-LT Kontrollelektronik* herzustellen. Falls der Verbindungsaufbau erfolgreich war, wird die aktuelle Firmware Version und die Nummer der COM Schnittstelle in der Statuszeile angezeigt.

CCD-INFO:	
L-LAS-LT-50-CL 512-pixel; 12.5μm pixel-pitch 2048-subpixel; resolution=+/-25μm working-range = 35mm 80mm	

Timeout-RS-232
Invalid port number
Cannot open port

Ferner werden im CCD-INFO Feld der von der Software erkannte Sensortyp, sowie weitere Kenngrößen eingeblendet.

Falls ein anderer Sensortyp an die RS232 Schnittstelle angeschlossen wird, muss unbedingt das CONNECT Funktionsfeld nochmals angewählt werden, damit der aktuelle Sensortyp von der PC-Software richtig erkannt werden kann.

Die serielle Verbindung zwischen dem PC und der *L-LAS-LT* Kontrollelektronik konnte nicht aufgebaut werden oder die Verbindung ist unterbrochen.

In diesem Falle sollte zuerst geprüft werden ob die *L-LAS-LT Kontrollelektronik* an die Spannungsversorgung angeschlossen ist und ob das serielle Verbindungskabel richtig zwischen dem PC und der Kontrollelektronik angeschlossen ist.

Falls die am PC zugewiesene Nummer der seriellen Schnittstelle nicht bekannt ist, können mit Hilfe des Drop-Down Listenfeldes CONNECT die Schnittstelle COM1 bis COM9 angewählt werden.

Falls die Statusmeldung "Invalid port number" lautet, ist die ausgewählte Schnittstelle z.B. COM2 an Ihrem PC nicht verfügbar.

Falls die Statusmeldung "Cannot open port" lautet, ist die ausgewählte Schnittstelle (z.B. COM2) eventuell schon von einem anderen Gerät belegt.

et's make sensors more individue
ruments

CONNEC	CTION SE	TTINGS		·
COMMUNICATION PRO	TOCOL		R\$232	
SELECT COM PORT [1	.256]		-	1
CHANGE Baudrate	BAU	DRATE	19200	
TRY 1	TO CONN	IECT		
L-LAS-LT-50-CL-V3.10 2	8/Aug/0	9		
ACCEPT COM SETTIN	GS		DISCA	RD
CONNECT COL	м:	1 Dat	a[64] block	< receiv
·				

SELECT COM PORT [1256]	-	ľ
------------------------	---	---

TRY TO CONNECT

1

L-LAS-LT-50-CL-V3.10 28/Aug/09

ACCEPT COM SETTINGS

DISCARD

CONNECT

CONNECT-Taste:

Nach Anklicken der CONNECT-Taste öffnet sich ein Popup-Fenster, mit dessen Hilfe verschiedene Einstellungen an der seriellen Schnittstelle vorgenommen werden können..

Einstellen der aktuellen COM-Port Nummer. Wertebereich 1...256 möglich.

Nach anklicken dieser Taste wird versucht eine Verbindung zur Sensor Hardware mit der aktuell eingestellten Baudrate über den aktuell angewählten COM-Port herzustellen.

Falls die Verbindung erfolgreich aufgebaut werden konnte, wird eine Firmware Statusmeldung in der Statuszeile angezeigt.

Mit der Taste ACCEPT COM SETTINGS werden die aktuellen Einstellwerte an der *L-LAS-LT-Scope* PC Software gespeichert. Das Popup-Fenster wird hierauf geschlossen.

Die Taste DISCARD wird das CONNECT Popup Fenster geschlossen, die Einstellungen für die Baudrate und COM-Port Nummer werden auf die alten Werte zurückgesetzt.

Vorgabe der Baudrate am Sensor. Mögliche Einstellwerte sind 9600Baud, 19200Baud, 38400Baud, 57600Baud oder 115200 Baud.

Die Baudrate wird an der Sensor-Hardware erst verändert, nachdem die CHANGE Baudrate Taste gedrückt wurde. Falls die Änderung der Baudrate am Sensor erfolgreich war erscheint eine entsprechende Statusmeldung.

Die Änderung der Baudrate wird im flüchtigen RAM Speicher des Sensors ausgeführt, falls die Baudrate dauerhaft abgespeichert werden soll müssen diese im EEPROM Speicher des Sensors abgelegt werden. EE-Knopf anwählen und SEND Taste drücken.

3.4 *L-LAS-LT-Scope* als Hilfsmittel zur Sensorjustage:

VIDEO

VIDEO:

Die Feinjustage der Sensoren relativ zum Messobjekt kann nach Anklicken der VIDEO-Taste am graphischen Anzeigefenster erfolgen. Aufgrund der begrenzten Datenübertragungsrate der RS232 Schnittstelle kann das Anzeigefenster lediglich im Sekundentakt aktualisiert werden.

Justage ok - mittig

Im graphischen Anzeigefenster wird jeweils das Intensitätsprofil als rote Kurve dargestellt. Die Zahlenwerte 1..4096 auf der x-Achse stellen die einzelnen Pixel der CCD-Zeile dar.

Das Intensitätsmaximum liegt etwa beim Pixel 2048. Der *L-LAS-LT Sensor* ist somit optimal in der Mitte des Messbereiches einjustiert.

Messbereichsgrenze - oben erreicht:

Der Abstand des *L-LAS-LT Sensors* zum Messobjekt ist beinahe zu groß. Das Intensitätsmaximum liegt bei Pixelwerten nahe 4000.

Der Abstand zwischen dem *L-LAS-LT Sensor* und dem Messobjekt sollte verringert werden.

Messbereichsgrenze - unten erreicht

Der Abstand des *L-LAS-LT Sensors* zum Messobjekt ist beinahe zu gering. Das Intensitätsmaximum liegt bei Pixelwerten nahe 1.

Der Abstand zwischen dem *L-LAS-LT Sensor* und dem Messobjekt sollte vergrößert werden.

3.5 *L-LAS-LT-Scope* als Hilfsmittel zur Sendeleistungseinstellung:

Achtung !

Mit Hilfe der POWER Schieberegler oder durch Zahlenwert-Eingabe in das entsprechende Eingabefeld kann die Laserleistung an der Laser-Sendeeinheit des L-LAS-LT Sensors eingestellt werden.

> Erst nach Anklicken der SEND Taste wird die Laserleistung an der Sendeeinheit des L-LAS-LT Sensors aktualisiert.

POWER-MODE DYNAMIC

DYNAMIC:

Falls die Betriebsart auf DYNAMIC eingestellt ist, wird die Laserleistung am L-LAS-LT Sensor automatisch geregelt. Hierbei wird die Laserleistung so eingeregelt, dass die Maximalwerte der "Intensitäts-Peaks" bei ca. 80-90% des Analog-Dynamikbereiches liegen.

Einstellungen am POWER-Schieberegler haben in dieser Betriebsart keine Wirkung! --- Dieser Modus wird als Standardmodus empfohlen ! ---

1024

900units

800-I /ADC-

700

600 Signal 500-

400 Video (300

200-100

Pixel: 2

€1

E-LEFT

0-1 1

E-BEG

500 1000

VIDEO:

Durch Anklicken der VIDEO-Taste wird das aktuelle Intensitätsprofil vom L-LAS-LT Sensor zum PC übertragen und im graphischen Anzeigefenster als rote Kurve dargestellt.

Optimale Sendeleistung:

Das Maximum des Intensitätsverlauf sollte im gesamten Messbereich (Pixel 1 ... 4096) deutlich oberhalb der Videoschwelle (grüne Linie) liegen.

den Schnittpunkten des Intensitätsprofils mit der Aus Videoschwelle können die Messwerte berechnet werden:

Das Intensitätsprofil (rote Kurve) am CCD-Empfänger ist zu niedrig.

Die Maximalwerte liegen unterhalb der Videoschwelle (grüne horizontale Linie).

Es kann kein Hell/Dunkel Übergang (Schnittpunkte zwischen roter und grüner Kurve) detektiert werden.

Somit ist der errechnete Messwert = 0!

MEASUREMENT-VALUE

0

1500 2000 2500 3000

Teech

0.000 [mm] 0.50 [+/-]

тог

3500

E-END 4096

4096

E-RIGHT

4 Auswerte-Betriebsarten

4.1 LEFT-EDGE:

Als Messwert wird der linke Schnittpunkt (Hell/Dunkel-Übergang) am Intensitätsmaxima herangezogen.

 $MVAL[pixel] = E_LEFT$ hier: 1052

4.2 RIGHT-EDGE

EVAL-MODE R-EDGE

Als Messwert wird der rechte Schnittpunkt (Hell/Dunkel-Übergang) am Intensitätsmaxima herangezogen.

MVAL[pixel] = E RIGHT hier: 1278

4.3 WIDTH

Die Breite des Intensitätsmaximums wird aus den Schnittpunkten des Intensitätsprofils (rote Kurve) mit der Videoschwelle (grüne Linie) berechnet.

MVAL[*pixel*]= *E*_*RIGHT* - _*LEFT* hier: MVAL = 226 = 1278-1052

4.4 CENTER

EVAL-MODE CENTER -

Die Zentrumsposition des Intensitätsmaximums wird aus den Schnittpunkten des Intensitätsprofils (rote Kurve) mit der Videoschwelle (grüne Linie) berechnet.

MVAL[*pixel*]=(*E*_*RIGHT*+_*LEFT*)/2 hier: MVAL = 1165 = (1278 + 1052)/2

Der EVAL-MODE CENTER sollte als Standardmodus am Zeilensensor eingestellt werden.

5 Daten-Rekorder Funktion

APPEND TO DATA	-FILE
RS-232-MODE STATIC	-
TIME-INTERVAL [sec]	€ 1.00
SAMPLES [MAX 32000]	\$ 100
DAYS: HOURS: MIN	: SEC:
START DATE: 09-08-2009	START TIME: 15:19:28
SAMPL	E: 10
d:\Programme\RECOR	D.DAT

TIME-INTERVAL [sec]	1.00
---------------------	------

PARA1 PARA2 REC CALIB

Nach Anklicken des REC Knopfes öffnet sich auf der Bedienoberfläche das DATA-RECORDER Fenster.

	RS-232-MODE	STATIC	<u>RS232-MODE:</u>
- 1			

Drop Down Funktionsfeld zur Einstellung der Datenanforderung an der L-LAS-Sensor Hardware.

STATIC:

Der Sensor sendet automatisch keine Messdaten über die RS232 Schnittstelle. Jeder einzelne Datentransfer wird vom PC/SPS über den Befehl Nr. 18 ausgelöst. Der Sensor sendet nach dieser Anforderung einen einzelnen Datenframe (36 Bytes) zum PC/SPS.

EXT-IN0 L/H TRIGG:

Mit jeder LOW/HIGH Flanke am Digitaleingang IN0/Pin3/grün wird ein einzelner Datenframe (36 Byte) zum PC/SPS übertragen.

TIME-INTERVAL [sec]:

Mit Hilfe des numerischen Eingabefeldes kann ein Zeitintervall in Sekunden angegeben werden. Nach Ablauf dieser Zeitspanne werden von der PC-Software automatisch Messdaten vom Sensor angefordert (Befehl 18). Der PC/SPS wartet, bis der vollständige Datenframe (36 Bytes) vom Sensor in den Eingangspuffer der seriellen Schnittstelle des PC ankommt. Hierauf speichert der PC die neuen Messdaten auf die Festplatte in eine Ausgabedatei. Minimaler Wert : 0.1 [sec]. Nach Ablauf des TIME-INTERVAL [sec] Zeitspanne wird ein neuer Transfer vom PC/SPS ausgelöst.

SAMPLES	[MAX 32000]	10	0
START DA	ATE:	START TIM	IE:
02-06-200	8	16:48:31	
DAYS:	HOURS:	MIN:	SEC
0	0	1	40

SAMPLES [MAX 32000]:

Numerisches Eingabefeld zur Vorgabe der Maximalzahl der Messwerte die Abgespeichert werden sollten. Werte von 10 bis 32000 sind einstellbar.

Numerische Anzeigefelder, die über den Zeitpunkt und das Datum der Aktivierung informieren. Diese Anzeigen werden aktualisiert, nachdem die START-Taste angeklickt wird.

Numerische Anzeigeelemente, welche die Zeitspanne in Sekunden anzeigen, die seit der Aktivierung der Recorder-Funktion abgelaufen sind.

L-LAS-Series Re Directory <u>H</u> istory:	corder-File: .Cwork			T	? 🗙
Suchen in:	Cwork		•	🗢 🗈 💣 📰	-
Zuletzt verwendete D Desktop Eigene Dateien Arbeitsplatz	BootLDR BootLDR CodeW1 CodeW70 CodeW70 CodeW70 CodeW70 NiCVI60 NiCVI60 NiCVI60 NiCVI60 XC161 LLASrecord.dat	:			
Netzwerkumgeb ung	Datei <u>n</u> ame: Datei <u>t</u> yp:	LLASrecord.dat *.dat		 ✓ 	<u>D</u> K Abbrechen

FILE-Taste

Nach Anklicken der Taste FILE öffnet sich ein neues Dialog-Fenster, das zur Vorgabe des Dateinamens, bzw. zur Einstellung des Speicherortes der Ausgabedatei dient.

Der aktuell gewählte Speicherort und der Dateiname der Ausgabedatei werden in einer Textanzeige neben der File-Taste eingeblendet.

d:\Programme\RECORD.DAT

START STOP

Mit Hilfe der START Taste kann die automatische Aufzeichnung gestartet werden. Falls die Aufzeichnung vor Erreichen der durch SAMPLES vorgegebenen Maximalzahl beendet werden sollte, kann dies durch Anklicken der STOP Taste erfolgen.

SAMPLE: 0

Numerisches Anzeigefeld, das die aktuelle Anzahl der gelesenen Messwerte ausgibt.

5.1 Datenformat der Ausgabedatei

Die Ausgabedatei des Datenrekorders besteht aus 7 Kopfzeilen gefolgt von den eigentlichen Messdaten. Die Messdaten werden Zeilenweise in die Ausgabedatei abgespeichert. Jede Zeile besteht aus insgesamt 5 Spalten, die durch ein TAB-Steuerzeichen voneinander getrennt sind.

Die Ausgabedatei kann durch einen einfachen Texteditor oder durch ein Tabellenkalkulationsprogramm (z. B. Microsoft EXCEL) geöffnet werden.

📕 RECORD.DAT - Editor	
<u>D</u> atei <u>B</u> earbeiten F <u>o</u> rmat <u>A</u> nsicht <u>?</u>	
Datei Bearbeiten Format Ansicht ? Date: 02-06-2008 Time: 16:48:31 Time: 16:48:31 1 Number of Samples: 100 Offset-Value [µm]: 55000 Slope-Value [µm]: 2.699951 E-LEFT E-RIGHT M-VALUE EDGES M-VAL[un 1618 2636 2127 4 55213 1618 2638 2128 4 55215 1618 2638 2128 4 55215 1618 2638 2128 4 55215 1618 2638 2127 4 55213 1618 2638 2128 4 55215 1618 2638 2128 4 55215 1618 2638 2128 4 55215 1618 2638 2128 4 55215 1618 2638 2128 4 55215 1618 2638	n]
1480 2516 1998 4 54865	~

- 1. Spalte = Messwert (Pixel) E-LEFT
- 2. Spalte = Messwert (Pixel) E-RIGHT
- 3. Spalte = Messwert (Pixel) M-VALUE
- 4. Spalte = Anzahl Kanten
- 5. Spalte = Messwert (Mikrometer)

6 Anhang

6.1 Laserwarnhinweis

6.2 Funktionsweise des TEACH/RESET-Tasters [1]:

Am Gehäuse des L-LAS-LT Sensors befindet sich ein Drucktaster mit Doppelfunktionalität:

aktuellen Maximal- und Minimalwerte (Schleppzeiger-Werte) zurückgesetzt.

RESET-Funktion:

Es wird kein Hardware/Software RESET durchgeführt!

Durch kurzes Drücken (t < 750ms) werden die

TEACH-Funktion:

Durch langes Drücken (t > 1.5s) werden die aktuellen Kantenbedeckungen als Lernwert im RAM-Speicher abgelegt. Die erfolgreiche Durchführung des Lernvorgangs wird durch 3-maliges Blinken der grünen LED angezeigt.

6.3 Funktionsweise des Toleranz-Potentiometers [1]:

Am Gehäuse des L-LAS-LT Sensors befindet sich ein Potentiometer zur Einstellung der Toleranzbandbreite.

TOLERANZ-Potentiometer:

Durch Drehen des Potentiometers im Uhrzeigersinn wird die Toleranzbandbreite vergrößert.

Drehen gegen den Uhrzeigersinn verringert die Toleranzbandbreite. Zur Einstellung der Toleranzbandbreite am *L-LAS-LT Sensor* muss das Potentiometer aktiviert sein (Schalterstellung HW-MODE auf ENABLE ALL oder ENABLE TOL SET).

^[1] bei CL-Typen nicht verfügbar

6.4 Funktionsweise der Digitaleingänge IN0 und IN1

Der L-LAS-LT Sensor besitzt zwei digitale Eingänge IN0 und IN1. Die Digitaleingänge können über die 8-polige Buchse (Typ Binder 712) kontaktiert werden.

DIGITALEINGANG IN0 (Pin3/grün) EXT-TRIGGER:

DIGITALEINGANG IN1 (Pin4/gelb) TEACH/RESET:

RESET-Funktion:

Durch Anlegen eines HIGH-Pulses von weniger als **750 ms** Dauer wird am *L-LAS-LT Sensor* die RESET-Funktion ausgeführt. Hierbei werden die aktuellen Maximal- und Minimalwerte (Schleppzeiger) zurückgesetzt. Es wird <u>kein</u> Hardware/Software RESET durchgeführt! Nach Erkennung des RESET-Pulses blinkt die gelbe LED 1x kurz auf.

TEACH-Funktion:

Durch Anlegen eines HIGH-Pulses von mehr als **1.5s** Dauer wird am *L-LAS-LT Sensor* die LERN-Funktion ausgeführt. Nach Erkennung des TEACH-Pulses blinkt die grüne LED am Gehäuse 3x kurz auf.

6.5 Anschlussbelegungen

STANDARD-TYP:

Am Gehäuse befindet sich eine Buchse zum Anschluss der Spannungsversorgung (8-pol. Typ Binder 712), eine 7-polige Buchse (Typ Binder 712) zum Anschluss des SLAVE Sensors, sowie eine dritte Buchse zum Anschluss der seriellen RS232 Verbindungsleitung (4-pol. Typ Binder 707).

COMPACT-LINE (CL)-TYP:

Belegung: +24V (+Ub)

0V (GND)

RxD

TxD

Am Gehäuse des *Compact-Line Sensors* befindet sich eine 8-polige Buchse zum Anschluss der Spannungsversorgung (Typ Binder 712) und eine 4-polige Buchse zum Anschluss der seriellen RS232 Verbindungsleitung (Typ Binder 707).

<u>Anschlusskabel:</u> cab-las4/PC (Länge 2m, Kabelmantel: PUR)

Pin:

1

2

3

Δ

Interface zur SPS/Spannungsversorgung: 8-polige Buchse Typ Binder 712

~

Standard Typ:

Compact-Line (CL) Typ:

	Pin:	Farbe:	Belegung:	Pin:	Farbe:	Belegung:
000	1	weiß	0V (GND)	1	weiß	0V (GND)
	2	braun	+24VDC (± 10%)	2	braun	+24VDC (± 10%)
\frown	3	grün	IN0 (EXT TRIGGER)	3	grün	IN0 (EXT TRIGGER)
	4	gelb	IN1 (TEACH/RESET)	4	gelb	IN1 (TEACH/RESET)
$\left(\circ \circ \circ \right)$	5	grau	OUT0 (-)	5	grau	OUT0 (-)
	6	rosa	OUT1 (+)	6	rosa	OUT1 (+)
XeX	7	blau	OUT2 (OK)	7	blau	0V (GND) oder 420mA
1 7	8	rot	ANALOG (0 +10V)	8	rot	ANALOG (0 +10V)
8						

Verbindungskabel: cab-las8/SPS (Länge 2m, Kabelmantel: PUR)

6.6 RS232 Schnittstellenprotokoll

RS232 Schnittstellen-Protokoll PC ⇔ L-LAS-LT Sensor Firmware Version 3.17

- Standard RS232 serielle Schnittstelle, kein Hardware-Handshake

- 3-Draht-Verbindung: GND, TX0, RX0
- Geschwindigkeit: 9600 Baud, 19200 Baud, 38400 Baud, 57600 Baud oder 115200Baud
- 8 Daten-Bits
- Kein Paritäts-Bit
- 1 Stop-Bit
- Binärmodus.

Die Werksseitig eingestellte Baudrate beträgt 19200 Baud.

Das Kontrollgerät (PC oder SPS) muss einen Datenrahmen bestehend aus 18-Wörter (1 Wort = 2 Byte = 16 Bit) zur L-LAS-LT Kontrolleinheit senden. Alle Wörter im Datenrahmen müssen im Binärformat übertragen werden. Das höherwertige Byte muss als erstes übertragen werden (MSB-first).

METHODE:

Der Mikrocontroller im *L-LAS-LT* Sensor liest ständig (Polling-Betrieb) den Eingangspuffer seines RS232 Moduls. Falls das eintreffende Wort = 0x0055 (0x55 hexadezimal = 85 dezimal) ist, wird dies als Synchronisationsereignis interpretiert(<sync-word>). Hierauf wird die mit dem 2. Wort übertragene Befehlsnummer (<order-word>) vom Mikrocontroller eingelesen.

Nach dem Befehlswort (**<order-word>**), folgt ein weiteres Wort, dass über die Nummer des Parametersatzes Auskunft gibt (**<para-set>**). Hierauf folgen weitere 15 Wörter **<parameter-word>**, welche die eigentlichen Parameter enthalten.

Nachdem der vollständige Datenrahmen (18-Wörter = 36 Bytes) eingelesen wurde, beginnt die *L-LAS-LT* Kontrollelektronik mit der Abarbeitung des im 2. Wort (<**order-word>**) verschlüsselten Befehls.

Format des Datenrahmens: <para-set 0="" ==""> STANDARD-TYP</para-set>			
Wort	Bedeutung	Kommentar	
1	<sync-word></sync-word>	hex-code 0x55, binary=0000 0000 0101 0101, dec.=85	
2	<order-word></order-word>	Befehlswort (vgl. Tabelle unten)	
	<pre><parameter-set> = 0</parameter-set></pre>	0 = Parametersatz Null	
4	POWER	Senderleistung (0 1000)	
5	POWER-MODE	Betriebsart Sender: (0 = STATIC), (1=DYNAMIC)	
6	POLARITY	Polarität für OUT0, OUT1, OUT2 (0=DIRECT, 1=INVERSE)	
7	EVAL-MODE	Auswerte-Modus (0=L-EDGE, 1=R-EDGE, 2=WIDTH, 3=CENTER)	
8	E-BEGIN	Beginn der Auswertung Start-Pixel (1. E_END-1)	
9	E-END	Ende Auswertebereich End-Pixel (E_BEG+1 SUBPIXEL)	
10	TEACH-VALUE	Lernwert in Pixel (1 SUBPIXEL)	
11	TOLERANCE-HIGH VALUE	Toleranzwert TOL: (0 SUBPIXEL/2)	
12	TOLERANCE-LOW-VALUE	Toleranzwert TOL-LOW: (0 SUBPIXEL/2)	
13	AVERAGE	Mittelwertbildung (1,2,4,8,16,32,64,128 oder 256)	
14	TRIGG-MODE	Trigger Modus (0=CONTINOUS, 1=EXT. IN0 L/H, 2=EXT.IN0 HIGH)	
15	ANALOG-OUT	Betriebsart Analogausgang:	
		(0=DIRECT 010V, 1=MAXIMA, 2=MINIMA, 3=MAX-MIN)	
16	OPERATION-MODE	Betriebsart CCD-Zeile (0=LOW-GAIN / 1=HIGH-GAIN)	
17	HW-MODE	Betriebsart Hardwaretaste und Potentiometer	
		(DISABLE-ALL=0, ENABLE-ALL=1,ENABLE-BTN=2, ENABLE	
		POTI=3)	
18	VIDEOTHD [%]	Videoschwelle (0 100) in Prozent des ADC- Bereiches	

Format des Datenrahmens: <para-set 1="" ==""> STANDARD-TYP</para-set>				
Wort.	Bedeutung	Kommentar		
1	<sync-word> = 0x0055</sync-word>	hex-code 0x55, binary=0000 0000 0101 0101, dec.=85		
2	<order-word></order-word>	Befehlswort (vgl. Tabelle unten)		
	<parameter-set> = 1</parameter-set>	1 = Parametersatz Eins		
4	TRIGG-THRESHOLD	0, derzeit nicht verwendet		
5	RS232-MODE	Datenrekorder: 0 = STATIC, 1=EXT-IN0 L/H getriggert		
6	RS232-BAUD	Baudrate: 0=9600, 1=19200, 2=38400, 3=57600, 4=115200 Baud		
7	ZOOM-MODE	Zoom-Funktion Analogausgang: (0=DIRECT, 1=ZOOMx1, 2=ZOOMx2,		
		3=ZOOMx4, 4=ZOOMx8, 5=ZOOMx16, 6=WIN-5V, 7=WIN-10V)		
8	Parameter 5	0, derzeit nicht verwendet		
9	Parameter 6	0, derzeit nicht verwendet		
10	Parameter 7	0, derzeit nicht verwendet		
11	Parameter 8	0, derzeit nicht verwendet		
12	Parameter 9	0, derzeit nicht verwendet		
13	Parameter 10	0, derzeit nicht verwendet		
14	Parameter 11	0, derzeit nicht verwendet		
15	SLOPE VALUE L-WORD	Empfindlichkeit Sensor (x 1024), niederwertiges Wort		
16	SLOPE VALUE H-WORD	Empfindlichkeit Sensor (x1024), höherwertiges Wort		
17	REF-OFFSET L-WORD	Referenz-Offset in µm, niederwertiges Wort		
18	REF-OFFSET H-WORD	Referenz-Offset in um, höherwertiges Wort		

Format des Datenrahmens: <para-set 0="" ==""> COMPACT-LINE (CL)-TYP</para-set>			
Wort	Bedeutung	Kommentar	
1	<sync-word> = 0x0055</sync-word>	hex-code 0x0055, binary=0000 0000 0101 0101, dec.=85	
2	<order-word></order-word>	Befehlswort (vgl. Tabelle unten)	
3	<pre><parameter-set> = 0</parameter-set></pre>	0 = Parametersatz Null	
4	POWER	Senderleistung (0 1000)	
5	POWER-MODE	Betriebsart Sender: (0 = STATIC), (1=DYN-POW), (2=DYN-ITIME)	
6	POLARITY	Polarität für OUT0, OUT1, OUT2 (0=DIRECT, 1=INVERSE)	
7	EVAL-MODE	Auswerte-Modus (0=L-EDGE, 1=R-EDGE, 2=WIDTH, 3=CENTER)	
8	E-BEGIN	Beginn der Auswertung Start-Pixel (1E_END-1)	
9	E-END	Ende Auswertebereich End-Pixel (E_BEG+1 SUBPIXEL)	
10	TEACH-VALUE	Lernwert in Pixel (1 SUBPIXEL)	
11	TOLERANCE-HIGH VALUE	Toleranzwert TOL: (0 SUBPIXEL/2)	
12	TOLERANCE-LOW-VALUE	Toleranzwert TOL-LOW: (0 SUBPIXEL/2)	
13	AVERAGE	Mittelwertbildung (1,2,4,8,16,32,64,128 oder 256)	
14	TRIGG-MODE	Trigger Modus (0=CONTINOUS, 1=EXT. IN0 L/H, 2=EXT.IN0 HIGH)	
15	ANALOG-OUT	Betriebsart Analogausgang:	
		(0=DIRECT 010V, 1=MAXIMA, 2=MINIMA, 3=MAX-MIN)	
16	ZOOM-MODE	Zoom-Funktion Analogausgang: (0=DIRECT, 1=ZOOMx1, 2=ZOOMx2,	
		3=ZOOMx4, 4=ZOOMx8, 5=ZOOMx16, 6=WIN-5V, 7=WIN-10V)	
17	VIDEOTHD [%]	Videoschwelle (0 100) in Prozent des ADC- Bereiches	
18	INTEGRATION-TIME	Belichtungszeit 1333 … 10000, ⇔ 1.33[ms] … 10[ms]	

Format des Datenrahmens: <para-set 1="" ==""> COMPACT-LINE (CL)-TYP</para-set>			
Word.	Bedeutung	Kommentar	
1	<sync-word></sync-word> = 0x0055	hex-code 0x55, binary=0000 0000 0101 0101, dec.=85	
2	<order-word></order-word>	Befehlswort (vgl. Tabelle unten)	
	<parameter-set> = 1</parameter-set>	1 = Parametersatz Eins	
4	TRIGG-THRESHOLD	0, derzeit nicht verwendet	
5	RS232-MODE	Datenrekorder: 0 = STATIC, 1=EXT-IN0 L/H getriggert	
6	RS232-BAUD	Baudrate: 0=9600, 1=19200, 2=38400, 3=57600, 4=115200 Baud	
7	Parameter 4	0, derzeit nicht verwendet	
8	Parameter 5	0, derzeit nicht verwendet	
9	Parameter 6	0, derzeit nicht verwendet	
10	Parameter 7	0, derzeit nicht verwendet	
11	Parameter 8	0, derzeit nicht verwendet	
12	Parameter 9	0, derzeit nicht verwendet	
13	Parameter 10	0, derzeit nicht verwendet	
14	Parameter 11	0, derzeit nicht verwendet	
15	SLOPE VALUE LO-WORD	Empfindlichkeit Sensor (x 1024), niederwertiges Wort	
16	SLOPE VALUE HI-WORD	Empfindlichkeit Sensor (x1024), höherwertiges Wort	
17	REF-OFFSET LO-WORD	Referenz-Offset in µm, niederwertiges Wort	
18	REF-OFFSET HI-WORD	Referenz-Offset in um, höherwertiges Wort	

Bedeutung des 2.Wortes im Datenrahmen: <order-word> Befehlstabelle</order-word>				
Wert	Bedeutung / Aktion			
0	Nop	no operation		
1	Sende Parameter vom PC in das L-LAS-RAM	18 words, PC \Rightarrow L-LAS-RAM		
2	Hole Parameter von L-LAS-RAM	18 words, L-LAS-RAM \Rightarrow PC		
3	Sende Parameter vom PC zum EEPROM	18 words, PC \Rightarrow L-LAS-EEPROM		
4	Hole Parameter von EEPROM des L-LAS	18 words, L-LAS-EEPROM \Rightarrow PC		
5	Echo Prüfung: Hole Echo-Zeichen von L-LAS	18 words, erstes Wort=0x00AA=170dec		
6	Aktiviere Lernvorgang, speichern in RAM	18 words PC \Rightarrow L-LAS-RAM		
7	Hole Firmware Versionsmeldung von L-LAS	72-bytes, L-LAS \Rightarrow PC		
8	Hole Messdaten von L-LAS-RAM	18 words, L-LAS-RAM \Rightarrow PC		
9	Hole Video-Puffer Information vom L-LAS	64 words, L-LAS-RAM \Rightarrow PC		
11	Setze Maxima/Minima-Werte zurück	18 words PC \Rightarrow L-LAS-RAM		
18	Hole Messdaten von L-LAS-RAM (Rekorder-Format)	18 words PC \Rightarrow L-LAS-RAM		
190	Ändere RS232-Baudrate	18 words PC \Rightarrow L-LAS-RAM		

Beispiele zum Datenaustausch:

Es müssen stets alle 18-Wörter (36 Bytes) des Datenframes übertragen werden, gegebenenfalls müssen die Werte=0 vorbelegt sein.

Instruments SENDE Parameter-Satz = 0 zum L-LAS-RAM <order-word> = 1 <para-set> = 0 <order-word> = 1 Sende die aktuellen Parameter (SATZ=0) in das RAM des L-LAS-LT Sensors DATA FRAME: $\text{PC} \ \rightarrow \ \text{SENSOR}$ (18-Words = 36Bytes, MSB first) <para-set> = 0 <order-word> = 1 <sync-word>-18 4 0x0055 0 500 0 0 250 1500 POWER POWER-MODE POLARITY EVAL-MODE . • INTEGRATION-TIME

Sensor

Let's make sensors more individual

Der übertragene Datenrahmen wird automatisch als Echo vom L-LAS-LT Sensor zurückgesendet!!

Zur endgültigen Übernahme des vollständigen Parametersatzes müssen beide Parametersätze (Satz=0 und Satz=1) übertragen werden.

Achtung !

Instruments LERNFUNKTION am L-LAS auslösen <order-word> = 6 <order-word> = 6 <para-set> = 0 Lernfunktion am L-LAS-LT Sensor auslösen. Im 10. Wort der Rückmeldung steht der neue Lernwert. DATA FRAME: $PC \rightarrow SENSOR$ (18-Words = 36Bytes, MSB first) <para-set> = 0 -<order-word> = 6 <sync-word> 18 4 0x0055 0 0 0 0 0 0 0 6 0 (18-Words = 36Bytes, MSB first) DATA FRAME: $\text{SENSOR} \ \rightarrow \ \text{PC}$ <para-set> = 0 <order-word> = 6 <sync-word>-4 10 18 2048 0x0055 0 500 1 0 1 1 1024 1500 6 POWER POWER-MODE POLARITY :

Sensor Let's make sensors more individual

• TEACH-VALUE

Instruments

			Se	nsor	Let's make sens	ors more indiv	vidual	
亦 Instruments								
Ändere Baudrate: <order-word> = 190</order-word>								
<order-word> = 190 Ändert die Baudrate am L-LAS-LT Se</order-word>	nsor.							
Die Baudrate wird im 3.ten Wort <para-set> übertragen. 9600 Baud = 0, 19200 Baud = 1, 38400Baud = 2, 57600 Baud = 3, 115200 Baud = 4</para-set>								
Der übertragene Datenrahmen wird automatisch als Echo vom L-LAS-LT Sensor noch in der alten Baudrate zurückgesendet!!								
Die Baudrate wird nur im RAM-Programmspeicher geändert (flüchtig).								
Falls die Baudrate dauerhaft geändert werden soll, muss dies über den Parameter RS232-BAUD im zweiten Parametersatz und durch abspeichern in das EEPROM erfolgen (Befehl 3).								
DATA FRAME: PC \rightarrow SENSOR (18-Words = 36Bytes, MSB first)								
<order-word> = 190</order-word>	4							18
0x0055 190 3	0	0	0	0		0	0	0
<para-set> = 3</para-set>								
(57600 Baud)								
DATA FRAME: SENSOR → PC (18-Words = 36Bytes, MSB first) <order-word> = 190 —</order-word>								
<sync-word></sync-word>	4							18
0x0055 190 3	0	0	0	0		0	0	0

